52 research outputs found

    Spin-dependent shot noise enhancement in a quantum dot

    Get PDF
    The spin-dependent dynamical blockade was investigated in a lateral quantum dot in a magnetic field. Spin-polarized edge channels in the two-dimensional leads and the spatial distribution of Landau orbitals in the dot modulate the tunnel coupling of the quantum dot level spectrum. In a measurement of the electron shot noise we observe a pattern of super-Poissonian noise which is correlated to the spin-dependent competition between different transport channels

    High-order cumulants in the counting statistics of asymmetric quantum dots

    Get PDF
    Measurements of single electron tunneling through a quantum dot using a quantum point contact as charge detector have been performed for very long time traces with very large event counts. This large statistical basis is used for a detailed examination of the counting statistics for varying symmetry of the quantum dot system. From the measured statistics we extract high order cumulants describing the distribution. Oscillations of the high order cumulants are observed when varying the symmetry. We compare this behavior to the observed oscillation in time dependence and show that the variation of both system variables lead to the same kind of oscillating response.Comment: 3 page

    Dopant-controlled single-electron pumping through a metallic island

    Full text link
    We investigate a hybrid metallic island / single dopant electron pump based on fully-depleted silicon on insulator technology. Electron transfer between the central metallic island and the leads is controlled by resonant tunneling through single phosphorus dopants in the barriers. Top gates above the barriers are used control the resonance conditions. Applying radio frequency signals to the gates, non-adiabatic quantized electron pumping is achieved. A simple deterministic model is presented and confirmed by comparing measurements with simulations

    High cumulants in the counting statistics measured for a quantum dot

    Full text link
    We report on measurements of single electron tunneling through a quantum dot using a quantum point contact as non-invasive charge detector with fast time response. We elaborate on the unambiguous identification of individual tunneling events and determine the distribution of transferred charges, the so-called full counting statistics. We discuss our data analysis, including the error estimates of the measurement, and show that the quality of our experimental results is sufficiently high to extract cumulants of the distribution up to the 20th order for short times.Comment: 4 pages, 3 figures, Contribution to EP2DS18-MSS14, Kobe, Japan, July 200

    A quantized current source with mesoscopic feedback

    Get PDF
    We study a mesoscopic circuit of two quantized current sources, realized by non-adiabatic single- electron pumps connected in series with a small micron-sized island in between. We find that quantum transport through the second pump can be locked onto the quantized current of the first one by a feedback due to charging of the mesoscopic island. This is confirmed by a measurement of the charge variation on the island using a nearby charge detector. Finally, the charge feedback signal clearly evidences loading into excited states of the dynamic quantum dot during single-electron pump operation

    Integrated quantized electronics: a semiconductor quantized voltage source

    Full text link
    The Josephson effect in superconductors links a quantized output voltage Vout = f \cdot(h/2e) to the natural constants of the electron's charge e, Planck's constant h, and to an excitation frequency f with important applications in electrical quantum metrology. Also semiconductors are routinely applied in electrical quantum metrology making use of the quantum Hall effect. However, despite their broad range of further applications e.g. in integrated circuits, quantized voltage generation by a semiconductor device has never been obtained. Here we report a semiconductor quantized voltage source generating quantized voltages Vout = f\cdot(h/e). It is based on an integrated quantized circuit of a single electron pump operated at pumping frequency f and a quantum Hall device monolithically integrated in series. The output voltages of several \muV are expected to be scalable by orders of magnitude using present technology. The device might open a new route towards the closure of the quantum metrological triangle. Furthermore it represents a universal electrical quantum reference allowing to generate quantized values of the three most relevant electrical units of voltage, current, and resistance based on fundamental constants using a single device.Comment: 15 pages, 3 figure
    corecore